Deep Dive into How Electrons Behave
Unprecedented characterization of subsurface electronic states could lead to better semiconductors and seeing new interactions.
Unprecedented characterization of subsurface electronic states could lead to better semiconductors and seeing new interactions.
Multiple techniques to characterize an enzyme complex shed light on how bacteria create particles and contribute to global cycles.
Study shows how aerosols interacting with clouds can be accurately captured by sparse set of representative particles.
Where does the heat go when a glass melts into a liquid? Not to changing the vibrations of atoms….
Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.
Non-destructive technique identifies key variations in Alaskan soils, quickly providing insights into carbon levels.
New approach offers data across species, sites, and canopies, providing insights into carbon uptake by forests.
The magnetic noise caused by adsorbed oxygen molecules is “eating at” the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.
Water passes through human-made straws faster than the “gold standard” protein, allowing us to filter seawater.
An electric field switches the conductivity on and off in atomic-scale channels, which could allow for upgrades at will.
A revolutionary material harbors magnetism and massless electrons that travel near the speed of light—for future ultrasensitive, high-efficiency electronics and sensors.
Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.