A Rare Quantum State Realized in a New Material
A revolutionary material harbors magnetism and massless electrons that travel near the speed of light—for future ultrasensitive, high-efficiency electronics and sensors.
A revolutionary material harbors magnetism and massless electrons that travel near the speed of light—for future ultrasensitive, high-efficiency electronics and sensors.
Machine learning and neural networks are the foundation of artificial intelligence and image recognition, but now they offer a bridge to see and recognize exotic insulating phases in quantum materials.
Observed atomic dynamics helps explain bizarre flow without friction that has been puzzling scientists for decades.
Electrons are forced to the edge of the road on a thin sheet of tungsten ditelluride.
Detector measures the energy a neutrino imparts to protons and neutrons to help explain the nature of matter and the universe.
Microwave heating significantly alters Alfvén waves, offering insights into the physics of the waves themselves.
International collaborators advance physics basis for tokamak plasma confinement at low rotation, potentially benefiting a fusion reactor.
Large-scale simulations of quarks promise precise view of reactions of astrophysical importance.
Gravitational wave observations combined with optical and gamma-ray data confirm earlier predictions, offer insights into how the galaxy produces lead, mercury, and other elements.
Real-time imaging shows how hydrogen causes oxygen to leave a buried surface, transforming an oxide into a metal.
Simply applying a small voltage dramatically changes the atomic structure, vital to creating materials for advanced computer memory.
A new x-ray beam technique tracks atomic-level changes under real-world operating conditions.