Observing the Coherent Motion of Electrons with an Attosecond Stopwatch
Scientists illuminate the quantum dynamics of electrons in highly excited molecules.
Scientists illuminate the quantum dynamics of electrons in highly excited molecules.
Scientists use a common engineering approach to enhance the superconductivity and induce ferroelectricity in the quantum material strontium titanate.
MemHC improves the efficiency of complex supercomputer physics calculations by optimizing memory management.
New results will help physicists interpret experimental data from particle collisions and better understand the interactions of quarks and gluons.
For the first time, scientists observe a new and rare decay mode where oxygen-13 breaks into three helium nuclei and a proton following beta decay.
Scientists successfully measure high-dimensional qudits, cousins to quantum computing qubits.
First measurements of how hypernuclei flow from particle collisions may give insight into the strange matter makeup and properties of neutron stars.
If observed, neutrinoless double-β decay would have changed our view of the Universe.
Nuclear physicists find evidence of superradiant states by looking at the alpha decay of excited states in mirror nuclei.
New measurements at RHIC provide evidence for quark ‘deconfinement’ and insight into the unimaginable temperature of the hottest matter on Earth.
Data on protons emitted from wide range of gold-gold collision energies shows absence of a quark-gluon plasma (QGP) at the lowest energy.
The SNO+ experiment has for the first time shown that neutrinos from a nuclear reactor over 240 km away can be detected with plain water.