Advanced Techniques Paint a More Accurate Picture of Molecular Geometry in Metal Complexes
Ultrafast X-ray scattering and advanced numerical simulations decode distinct molecular structures and their equilibration dynamics in metal-metal complexes.
Ultrafast X-ray scattering and advanced numerical simulations decode distinct molecular structures and their equilibration dynamics in metal-metal complexes.
Scientists Gain new insights into the nature of the puzzling lambda 1405 hyperon resonance and its controversial partner.
Researchers developed a remotely controlled device for the safe and efficient purification of astatine using liquid phase chemistry.
Modeling the diffusion of oxygen into accelerator cavities allows scientists to tailor their properties.
Scientists are closing in on a major cornerstone of nuclear physics, Tin-100.
A new quantum algorithm speeds up simulations of coupled oscillators dynamics.
Experiments show that applied voltage can dramatically alter the magnetic properties of quantum materials.
Researchers combine solar energy, electrochemistry, and thermal catalysis to remove the need for fossil fuel-driven chemical conversions.
Extreme stars may have mountains like those on moons in our solar system. If so, they could produce detectable oscillations of space and time.
Requiring consistency between the physics of neutron stars and quark matter leads to the first astrophysical constraint on this exotic phase of matter.
Theorists propose a new approach to electroluminescent cooling that works like inverted solar photovoltaic cells.
Ultrafast electron diffraction imaging reveals atomic rearrangements long suspected to be crucial in the photochemistry of bromoform.