Electrons Fingerprint the Fastest Laser Pulses
Simulations indicate that ultrafast laser pulses leave vortex-shaped patterns in their wake.
Simulations indicate that ultrafast laser pulses leave vortex-shaped patterns in their wake.
Scientists reveal conductive edges and thread-like flaws using a specialized imaging technique of interest for next-generation electronics.
Straining a thin film controllably allows tuning of the materials’ magnetic, electronic, and catalytic properties, essential for new energy and electronic devices.
Scientists identified defects responsible for detrimental blinking that limits nanoparticle use in LEDs, solar cells, and lasers.
Analyses reveal diversity in carbon turnover and other degradation processes, offering insights for biofuel production.
New approach could benefit applications as diverse as propeller and printers.
Scientists explain diverse results around a material that is both insulator and conductor and offer chemical roadmap to harness it.
Better storm surge prediction capabilities could help reduce the impacts of extreme weather events, such as hurricanes.
Studies of the neutrinos emitted in the radioactive decay of nuclei held in an ion trap allow sensitive searches for new interactions.
A simple chemical bonding approach enables assembly of very thin porous protein crystals that are bendable and adaptive—requirements for flexible electronics or batteries.
Confining water in tiny straws confirms predicted rapid transport of protons along a water “wire”—vital for more efficient fuel cells.
Scientists determined new molecular-level information at the solid/liquid interface, pushing toward better energy storage devices.