Controlling Materials Properties Through Nanoscale Patterning
By confining the transport of electrons and ions in a patterned thin film, scientists alter the material's properties for next-generation electronics.
By confining the transport of electrons and ions in a patterned thin film, scientists alter the material's properties for next-generation electronics.
Interfaces made by stacking certain complex oxide materials can tune the quantum interactions between electrons, yielding exotic spin textures.
Researchers detect an exotic electron phase called Wigner crystal in tungsten diselenide/tungsten disulfide moiré superlattices.
Patterned arrays of nanomagnets produce X-ray beams with a switchable rotating wavefront twist.
Researchers develop the first 2D telecommunication-compatible quantum light source, smoothing the path toward a quantum internet.
Combining synthesis, characterization, and theory confirmed the exotic properties and structure of a new intrinsic ferromagnetic topological material.
Neutrons reveal remarkable atomic behavior in thermoelectric materials for more efficient conversion of heat into electricity.
Studies of the nanostructure of a chiral magnet provides insights on controlling magnetic properties for applications in computers and other electronics.
Neutron scattering monitors structures during post-production heat treatment to validate production models.
Discovery of a short-lived state could lead to faster and more energy-efficient computing devices.
Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes.
Arsenic doping dramatically improves the ability of black phosphorous to convert heat into electricity.