Scientists Capture a ‘Quantum Tug’ between Neighboring Water Molecules
Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes.
Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes.
Leveraging peeling physics in current tokamaks improves fusion performance and integrates with exhaust solutions for future fusion reactors.
The novel Lyman-alpha Measurement Apparatus (LLAMA) measures neutral particles in a fusion device and the fueling they provide.
Laboratory measurements give new insights into the physics of auroral electron acceleration by Alfvén waves.
An operating mode called wide pedestal quiescent H-mode allows tokamak operation without detrimental edge instabilities.
New approach helps protect tokamak walls while maintaining fusion conditions in the core.
First observation of embedded magnetic islands paves way for improved fusion reactor designs.
Electromagnetic waves are used to internally identify turbulent magnetic fluctuations in 100-million-degree fusion plasmas.
State-of-the-art X-ray techniques found hidden damage in neutron irradiated silicon carbide, a possible structural material for future fusion reactors.
New measurements show that fast flows in a tokamak plasma help remove and prevent impurities.
New concept would deliver continuous electricity while reducing cost and risk.
Measurements and modeling demonstrate that perturbations to the magnetic field in a tokamak fusion plasma can suppress high-energy runaway electrons.