Magnetic Levitation of Ultracold Neutrons Yields New Measurement of the Neutron Lifetime
Storing extremely slow neutrons in a novel trap enables precise measurement of a basic property of particle physics.
Storing extremely slow neutrons in a novel trap enables precise measurement of a basic property of particle physics.
Insights into how nature converts carbon dioxide into sugar could help scientists develop crops that produce fuels and other products.
Scientists observe and control molecular and atomic dynamics at the fastest timescales to date.
Detailed 3D images show how nanoparticles change in reactions that purify contaminated water or power recyclable geochemical batteries.
Researchers offer insights into how a key piece of photosynthetic machinery changed over 3 billion years.
Controlled pulses of chemicals over a wide pressure range can link fundamental studies to practical performance, informing catalyst design.
Read more about Crossing the Great Divide Between Model Studies and Applied Reactors in CatalysisResearchers demystify how the nitrogenase enzyme breaks bonds to learn a better way to make ammonia.
The symmetrical light-gathering, energy-producing complex offers insights into how modern photosystems evolved.
Even a single species of bacteria can positively affect soils and plants, improving and even enabling agriculture in semi-arid areas.
First-of-a-kind study advances understanding of microbial and viral communities involved in biomass breakdown.
Scientists reveal the importance of an amino acid that supplies energy and protection for microbial communities deep underground.
An atomic view of how toxic uranium binds to iron minerals in the environment enables better predictions of its behavior.