Atomic Vibes During Melting?
Where does the heat go when a glass melts into a liquid? Not to changing the vibrations of atoms….
Where does the heat go when a glass melts into a liquid? Not to changing the vibrations of atoms….
Engineered stacked perovskite layers harvest light or create light via layer edges.
Crumpling reduces rigidity in an otherwise stiff material, making it less prone to catastrophic failure.
The magnetic noise caused by adsorbed oxygen molecules is “eating at” the phase stability of quantum bits, mitigating the noise is vital for future quantum computers.
Water passes through human-made straws faster than the “gold standard” protein, allowing us to filter seawater.
A revolutionary material harbors magnetism and massless electrons that travel near the speed of light—for future ultrasensitive, high-efficiency electronics and sensors.
Observed atomic dynamics helps explain bizarre flow without friction that has been puzzling scientists for decades.
Microwave heating significantly alters Alfvén waves, offering insights into the physics of the waves themselves.
International collaborators advance physics basis for tokamak plasma confinement at low rotation, potentially benefiting a fusion reactor.
Large-scale simulations of quarks promise precise view of reactions of astrophysical importance.
Gravitational wave observations combined with optical and gamma-ray data confirm earlier predictions, offer insights into how the galaxy produces lead, mercury, and other elements.
Real-time imaging shows how hydrogen causes oxygen to leave a buried surface, transforming an oxide into a metal.