New “Gold Standard” for Flexible Electronics
Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.
Simple, economical process makes large-diameter, high-performance, thin, transparent, and conductive foils for bendable LEDs and more.
Tracking movements of individual particles provides understanding of collective motions, synchronization and self-assembly.
More atomic bonds is the key for performance in a newly discovered family of cage-structured compounds.
Bottom-up synthesis of tunable carbon nanoribbons provides a new route to enhance industrial, automotive reactions.
Enhanced stability in the presence of water could help reduce smokestack emissions of greenhouse gases.
New material based on common iron ore can help turn intermittent sunlight and water into long-lasting fuel.
Researchers made a sheet of boron only one atom thick with the potential to change solar panels, computers, and more.
Novel electrode materials have designed pathways for electrons and ions during the charge/discharge cycle.
Researchers create materials with controllable electrical and magnetic properties, even at room temperature.
First observation of “quantum” heat transport uncovers the ultimate limits for nanoscale devices.
Well-packed organic glass better resists changes when exposed to light.
Rough surfaces provide additional sites for energy-generating reactions in fuel cells.