Controlling Light to Accelerate Electrons in Just Meters
A novel paradigm for pushing energy in a particle accelerator method could dramatically shrink future accelerators.
A novel paradigm for pushing energy in a particle accelerator method could dramatically shrink future accelerators.
New laser-driven experiments and numerical simulations reveal an electron acceleration mechanism relevant to young supernova shock waves.
Discovery could help control potentially damaging bursts during plasma disruptions, another step toward fusion power production.
New approach doubles the current driven by microwave heating at the DIII-D National Fusion Facility
Scientists created the Parker spiral – the spiral magnetic field structure of the Sun due to its rotation – in the lab
Injecting pellets into fusion plasma helps repair tears in fusion reactors’ magnetic fields, improving prospects for fusion energy.
3D magnetic fields can help control the plasma edge to prevent damaging bursts of heat and particles from fusion plasma.
Forming a staircase in the edge of the plasmas can boost the performance of a fusion reactor
New high-resolution measurements of tokamaks’ tungsten walls may provide insight into how to better protect the armor material
A test of titanium diboride opens the door to a potential new class of materials for fusion reactor applications.
Mirrored D shape demonstrates surprisingly high pressures in a tokamak, indicating a shape change may be in order for next-generation fusion reactors.
Thin-walled diamond shells carry payloads of boron dust; the dust mitigates destructive plasma disruptions in fusion confinement systems.