Imperfections Show “Swimming” Particles the Way to Self-Healing and Shape-Changing
Defects in liquid crystals act as guides in tiny oceans, directing particle traffic.
Defects in liquid crystals act as guides in tiny oceans, directing particle traffic.
Wide metastable composition ranges are possible in alloys of semiconductors with different crystal structures.
New binding molecules formed a protective layer after charging and discharging, making a promising battery component more stable.
Built from the bottom up, nanoribbons can be semiconducting, enabling broad electronic applications.
Direct writing of pure-metal structures may advance novel light sources, sensors and information storage technologies.
Scientists combine biology, nanotechnology into composites that light up upon chemical stimulation.
Swirling soup of matter’s fundamental building blocks spins ten billion trillion times faster than the most powerful tornado, setting new record for “vorticity.”
A new class of plant-specific genes required for flowering control in temperate grasses is found.
Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can’t be cultivated in a laboratory.
First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.
The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.
Genome-wide rice studies yield first major, large-scale collection of mutations for grass model crops, vital to boosting biofuel production.