
Scientists Take Control of Magnetism at the Microscopic Level
Studies of the nanostructure of a chiral magnet provides insights on controlling magnetic properties for applications in computers and other electronics.
Studies of the nanostructure of a chiral magnet provides insights on controlling magnetic properties for applications in computers and other electronics.
Neutron scattering monitors structures during post-production heat treatment to validate production models.
Discovery of a short-lived state could lead to faster and more energy-efficient computing devices.
Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes.
Arsenic doping dramatically improves the ability of black phosphorous to convert heat into electricity.
New experiment finds evidence of a collective behavior of electrons to form particle-like quantum objects called “anyons.”
Scientists use quantum entangled light for a new form of microscopy able to detect signals normally hidden by quantum noise.
Researchers create DNA nano-chambers with bonds that can control the assembly of targeted nanoparticle structures.
Highly selective interactions between regions of hybrid polymer particles means they can be programmed to assemble into crystal superstructures.
Study finds atomic-scale ordering of elements in a metallic alloy that is responsible for alloy’s increased strength.
Scientists uncover a microscopic mechanism that involves atomic vibrations in a quantum material that trap electrons.
Scientists discover a ‘super’ current on the perimeter of an exotic material.