A Map Made in the Heavens
Maps are made with potential. First glimpsed in the mind's eye, their possibilities unfold, to perhaps one day be viewed in clear sight.
In a sense, a team of researchers supported by the Department of Energy's (DOE's) Office of Science have recently inverted that idea, mapping galaxies in clear – or telescopic – sight to better understand the universe and the wonders within.
David Schlegel, a physicist at Lawrence Berkeley National Laboratory (Berkeley Lab) led that team of scientists; the members of a sky-gazing collaboration known as the Baryon Oscillation Spectroscopic Survey (BOSS). Earlier this month, BOSS scientists announced that they had mapped the locations of 1.2 million galaxies and thereby measured the scale of the universe to an unprecedented accuracy of one-percent.
That's impressive precision, since some of those galaxies were more than six billion light years away, and light travels 186,282 miles each second in vacuum (It can only travel that fast because it travels, well, light.) To get a sense of the survey's accuracy, try putting your hands apart to estimate the distance of one foot. You'd have to be off by just a tenth of an inch (.12 inches to be precise) to even approach BOSS' precision. To achieve that incredible – and unprecedented – result, researchers used high-precision observations made by the Sloan Foundation Telescope at the Apache Point Observatory coupled with the incredible number-crunching power of Berkeley Lab's National Energy Research Scientific Computing Center.
That still begs the question of why BOSS scientists would want such a precise map – especially since they're not likely to travel to any of the galaxies they plotted anytime soon. The answer goes to the real reason of why many people map out trips: Snapshots may last (especially the horrible ones that somehow still end up on social media) but understanding is what matters.
That's why BOSS scientists mapped – and are still mapping – the universe. To understand it better. For instance, their findings show that the universe is almost completely flat, rather than being curved in some way. That has implications for what it may look like one day.
More importantly – and this goes to one of the primary purposes of the BOSS survey – the new map also offers more light on dark energy. Dark energy has effects akin to those experienced by many who have broken their new year's resolutions: They expected (or at least hoped) to find themselves shrinking, but instead have found themselves expanding.
For a long time, scientists expected that the expansion of space that started at the beginning of the universe (the Big Bang) would eventually be slowed down by the pull of gravity. Instead, two teams of scientists, one led by Berkeley Lab's Saul Perlmutter, discovered that the expansion of the universe was actually accelerating … and at an ever-increasing rate. (Perlmutter shared the 2011 Nobel Prize in Physics for the discovery.)
That's led to more than a bit of head-scratching. Scientists still don't understand what dark energy is – it remains one of the great questions of physics – but the BOSS survey gives them a better sense of what it is doing and not doing. That, in turn, allows researchers to improve their models; to cross out some ideas and perhaps pencil in a few others.
Such is the process of science, and map-making. Sometimes it can be a messy and a massy business http://science.energy.gov/news/featured-articles/2012/01-26-12/. But there's always one more destination to point to; one more wonder to explore. That's DOE's Office of Science at work; mapping the world (and universe) of wonder.
The Department's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit http://science.energy.gov/about. For more information about Berkeley Lab please go to:http://www.lbl.gov/.
Charles Rousseaux is a Senior Writer in the Office of Science, [email protected].