
Spontaneous Formation of Biomimetic, Nanoporous Membrane Channels
Carbon nanotubes insert into artificial and active cell membranes, reproducing major features of biological channels.
Carbon nanotubes insert into artificial and active cell membranes, reproducing major features of biological channels.
Discovery paves the way to quantitatively investigate the interplay among magnetism, superconductivity and disorder in high temperature superconductors.
Concentrating noble-metal catalyst atoms on the surface of porous nano-frame alloys shows over thirty-fold increase in performance.
Tracking electronic motion in a graphene-like bulk material shows fast electrons in all dimensions.
Magnetic property changes by several hundred percent over a narrow temperature range.
Scientists uncover the microscopic origin of a magnetic phase in iron-based superconductors.
Researchers have created a porous, layered material that can serve as a graphene analog, and which may be a tool for storing energy and investigating the physics of unusual materials.
New material with a layered, atomic sandwich structure has unique optoelectronic properties.
Combining computer simulations with laboratory measurements provides insights on molecular-level flexibility.
Experiments using novel magnetic nanostructures confirm theoretically predicted behavior – bolstering their utility as a tool for understanding complex magnetic materials.
New microscopy technique reveals giant enhancement of coupling between magnetic and electric dipoles that could lead to novel electronic devices.
Coexistence of two states of matter that normally avoid one another is revealed by inelastic neutron scattering experiments.