
New Mechanism Explains Rapid Energy Sharing Across Atomic Semiconductor Junctions
Electron transfer between atomically thin materials triggers the ultrafast release of heat.
Electron transfer between atomically thin materials triggers the ultrafast release of heat.
Scientists chart a path to sub-femtosecond hard X-ray Free-Electron-Laser pulses powered by compact plasma-based accelerators.
Scientists learn how to manipulate quantum properties in graphene to create resistance-free, electricity channels for loss-free future electronics.
By using a small number of photons to process information, two-dimensional quantum materials can lead to secure, energy-efficient communications.
Scientists discover that superconductivity in copper-based materials is linked with fluctuations of ordered electric charge and mobility of vortex matter.
Electric fields in a crystal of Ni2Mo3O8 create spin excitons and elusive magnetic order.
For the first time, researchers discovered magnetic order at high temperature in a metal widely used by the electronics industry.
Machine learning and artificial intelligence accelerate nanomaterials investigations.
A new microscopy technique measures atomic-level distortions, twist angles, and interlayer spacing in graphene.
New computational methods “fingerprint” polymer motions under flow.
This new Laue lens system received a 2022 Microscopy Today Innovation Award.
New algorithms allow real-time interactive data processing at 10X previous rates for electron microscopy data.