Review Examines the Science and Needs of Nitrogen-Based Transformations
Advances in biochemistry and catalysis could lead to faster, greener nitrogen-rich fertilizer.
Advances in biochemistry and catalysis could lead to faster, greener nitrogen-rich fertilizer.
A new platform melding microfluidics and robotics allows more in-depth bioanalysis with fewer cells than ever before.
How microbial communities adjust to nutrient-poor soils at the genomic and proteomic level gives scientists insights into land use.
Analyses reveal how a microbe breaks down lignin, providing a better understanding useful to making biofuels.
A combined experimental and modeling approach contributes to understanding small proteins with potential use in industrial, therapeutic applications.
Analyses of natural communities forming soil crusts agree with laboratory studies of isolated microbe-metabolite relationships.
Evidence suggests that biorefineries can accept various feedstocks without negatively impacting the amount of ethanol produced per acre.
New, easily prepared starting material opens access to learning more about a difficult-to-control element in nuclear waste.
New design coats molecular components and dramatically improves stability under tough, oxidizing conditions.
A new chemical process converts a component of wasted wood pulp and other biomass into high-value pressure-sensitive adhesives.
Scientists revise understanding of the limits of bonding for very electron-rich heavy elements.
Measuring the physical properties of water at previously unexplored temperatures offers insights into one of the world’s essential liquids.