Cooling with Electroluminescent Semiconductors
Theorists propose a new approach to electroluminescent cooling that works like inverted solar photovoltaic cells.
Theorists propose a new approach to electroluminescent cooling that works like inverted solar photovoltaic cells.
Ultrafast electron diffraction imaging reveals atomic rearrangements long suspected to be crucial in the photochemistry of bromoform.
Quantum ghost imaging of live plants at light levels lower than starlight gives new perspectives on plant processes.
A new approach to applying quantum chromodynamics paves the way for a deeper understanding of the strong nuclear interaction.
Integrating machine learning with real-time adaptive control produces high-performance plasmas without edge instabilities, a key for future fusion reactors.
Excess oxygen on the surface of the metal oxide catalyst copper oxide promotes hydrogen oxidation but suppresses carbon monoxide oxidation.
Particle lifetime measurements with early data from the Belle II experiment at the SuperKEKB accelerator demonstrate the experiment’s high precision.
Ultrafast electron imaging captures never-before-seen nuclear motions in hydrocarbon molecules excited by light.
A comparison of throughput measurements and analytical capacity estimates for quantum networks finds surprising patterns.
New lattice simulations compute the spin and density correlations in neutron matter that affect neutrino heating during core-collapse supernovae.
Copper catalysts play an unexpected oxidizing role during unassisted photocatalysis when coupled with plasmonic light absorbers.
Ultrafast electron scattering measurements reveal dynamic reconfiguration of polarization in relaxor ferroelectrics by light.