Computing How Quantum States Overlap
The floating block method provides the tools to compute how quantum states overlap and how to build fast and accurate emulators of those systems.
The floating block method provides the tools to compute how quantum states overlap and how to build fast and accurate emulators of those systems.
An almost-bound isotope of oxygen undergoes four-neutron decay that challenges theory.
Settling a long-standing question, scientists have proven that antihydrogen falls downward in a first-ever direct experiment.
Experiments find increased temperatures and carbon dioxide rapidly altered peatland carbon stocks, highlighting peatlands’ vulnerability to climate change.
The first results from the MAJORANA experiment dramatically improve current limits on this rare isotope’s decay.
Nitrogen-9 has only two neutrons to its seven protons and decays to an alpha particle by emitting five of its protons in stages.
Bayesian statistical methods help improve the predictability of complex computational models in experimentally unknown research.
Nuclear physicists have found the location of matter inside the proton that comes from the strong force - a fundamental force that holds protons together.
Researchers determined the neutron skin of lead-208 from experimental data collected in lead-lead collisions at the CERN Large Hadron Collider.
The Project 8 and He6-CRES collaborations use a new technique to set an upper limit on neutrino mass and prepare to test the nature of the weak force.
Scientists engineered a model bacterium's genetic code to make it virus-resistant and unable to exchange genetic material or grow without special media.
Scientists translate predictions of hydrodynamics into experimentally observable particle patterns.