Tuning Magnetism With Voltage Opens a New Path to Neuromorphic Circuits
Experiments show that applied voltage can dramatically alter the magnetic properties of quantum materials.
Experiments show that applied voltage can dramatically alter the magnetic properties of quantum materials.
Researchers combine solar energy, electrochemistry, and thermal catalysis to remove the need for fossil fuel-driven chemical conversions.
Emulating the edge of chaos of axons enables a metal wire to overcome its resistance without cooling, thereby amplifying signals flowing inside of it.
High-surface area silicon improves light-driven reactions of carbon dioxide.
By using a small number of photons to process information, two-dimensional quantum materials can lead to secure, energy-efficient communications.
Scientists used a series of three distinct, sequential reactions to transform carbon monoxide into methanol using proton-electron mediators.
In the unusual world of quantum materials, metals can guide light in their interiors instead of merely reflecting it.
A new experiment determines the energy available to drive chemical reactions at the interface between an illuminated semiconductor and a liquid solution.
Ligand design and electrochemical studies pave a new path toward stable high-valent mid-actinide complexes.
Machine learning and artificial intelligence accelerate nanomaterials investigations.
A new microscopy technique measures atomic-level distortions, twist angles, and interlayer spacing in graphene.
New computational methods “fingerprint” polymer motions under flow.