Measurement Technique Sheds New Light on Semiconductors for Solar Fuels
A new experiment determines the energy available to drive chemical reactions at the interface between an illuminated semiconductor and a liquid solution.
A new experiment determines the energy available to drive chemical reactions at the interface between an illuminated semiconductor and a liquid solution.
Ligand design and electrochemical studies pave a new path toward stable high-valent mid-actinide complexes.
Machine learning and artificial intelligence accelerate nanomaterials investigations.
A new microscopy technique measures atomic-level distortions, twist angles, and interlayer spacing in graphene.
New computational methods “fingerprint” polymer motions under flow.
This new Laue lens system received a 2022 Microscopy Today Innovation Award.
New algorithms allow real-time interactive data processing at 10X previous rates for electron microscopy data.
Three proteins work together to transmit signals for cell division, revealing new targets for cancer-fighting drugs.
Laser-based additive manufacturing produces high-entropy alloys that are stronger and less likely to fracture.
New tools borrowed from quantum computing will improve the detection of X-rays and gamma-rays.
Solving atomic structure and binding for improved antiviral drugs.
New gate design leads to fast coherent control of novel electromagnonics devices.