Controller with Integrated Machine Learning Tweaks Fusion Plasmas in Real Time
Integrating machine learning with real-time adaptive control produces high-performance plasmas without edge instabilities, a key for future fusion reactors.
Integrating machine learning with real-time adaptive control produces high-performance plasmas without edge instabilities, a key for future fusion reactors.
Study finds that neutral beam performance can be experimentally deduced from electron temperature evolution during neutral beam injection.
The first measurement of ion temperature in magnetic islands identified a steep gradient, providing insights for improving plasma confinement in tokamaks.
By achieving very high density and confinement quality at the same time, researchers make new strides toward fusion energy.
Settling a long-standing question, scientists have proven that antihydrogen falls downward in a first-ever direct experiment.
Plasmas with negative triangularity show reduced gradients that develop into instabilities, including under conditions relevant to fusion power plants.