In Neutrinos, Quantum Entanglement Leads to Shared Flavor
Researchers find that the quantum flavor and momentum states of the neutrinos in a supernova are strongly entangled through frequent interactions.
Researchers find that the quantum flavor and momentum states of the neutrinos in a supernova are strongly entangled through frequent interactions.
Simulations of massive neutron star merger remnants reveal their structure and early evolution as they cool down by emitting neutrinos.
Leveraging a new genome annotation tool, researchers identified ‘talented’ microorganisms with genes for transforming polyphenols in peatlands.
New calculations confirm recent experimental results on the transition between the alpha particle and its first excited state.
Scientists use state-of-the-art hydrodynamical simulation codes for astrophysics to solve the dynamical equations for neutrino flavor.
Research finds ab initio effective field theories are useful for calculating how nucleons scatter from collisions of atomic nuclei.
From the microscopic world to the entire Universe, pressure and energy relate in a similar manner.
A significantly improved description of experimental results suggests the importance of presently unaccounted for phenomena in fusion.
Scientists resolve the hypothesized anomalous increase in moment of inertia of fast rotating nuclei with models of neon-20 and chromium-48 nuclei.
Researchers develop a framework to predict subcooled flow boiling and critical heat flux.
A specialized microscope allows investigations of single molecules of cellulase enzymes.
Evidence for the formation of a quark-gluon plasma emerges from the recombination of freely moving charm and bottom quarks into Bc mesons.