Research Offers New Insights into the Mechanisms of How Quarks Combine
Measurements from the LHCb collaboration expand scientific understanding of how individual quarks assemble to form observable matter.
Measurements from the LHCb collaboration expand scientific understanding of how individual quarks assemble to form observable matter.
Scientists use a large-scale statistical analysis to extract the viscosity of hot, dense nuclear matter created at different heavy ion collision energies.
High resolution study of calcium-40 Ca to constrain potassium nucleosynthesis in the NGC 2419 globular cluster.
Researchers gain new insights into how the isotope astatine-211 interacts with resins commonly used to purify the isotope for therapeutic use.
Researchers used single crystal X-ray diffraction to learn about the structure and bonding of a highly radioactive radium compound.
Scientists develop a nanoscale electron imaging method that reveals the dynamics of the collective vibrations of atoms at the interface between materials.
Twisted bilayer graphene defies conventional theories by exhibiting superconductivity despite a vanishingly small charge carrier velocity.
Theory uncovers the formation process and dynamics of atomic-scale defects for generating and controlling qubits for quantum computers and sensors.
Electric fields in a crystal of Ni2Mo3O8 create spin excitons and elusive magnetic order.
Research on ammonia-oxidizing microorganisms reshapes scientists’ perspective on those microbes’ physiology and ecological niche.
Entangled photons reveal completely different information about an organic molecule than traditional spectroscopy techniques.
For the first time, researchers discovered magnetic order at high temperature in a metal widely used by the electronics industry.