Molecules Bend for Organic Electronics
New electronic ring-containing polymers enable unexpected movement of energy along the backbone connecting the polymer and within each ring.
New electronic ring-containing polymers enable unexpected movement of energy along the backbone connecting the polymer and within each ring.
Metal organic framework materials turn fluorescent light signals on or off in the presence of guest molecules.
Computational design of bundled peptide building blocks that can be precisely linked provides new ways to create customized polymers.
Scientists track down coexistence of multiple shapes in the Nickel-64 nucleus: a spherical ground state and elongated and flattened shapes.
New measurements provide insights for geochronology and reactor design.
Microbial populations trade places to satisfy their nitrogen nutritional needs.
Data from the first observation of a neutron-star collision combined with input from modern nuclear theory narrow the range of neutron star radii.
Scientists use a machine learning algorithm to reduce tuning time of a dozen instruments at once.
A novel terahertz laser achieves the performance goals critical for new applications in sensing and imaging.
An X-ray image taken with a novel X-ray wavefront imager results in high precision measurements of intensity and direction of the X-ray beam.
Research uses directed gas phase preparation of two carbenes, triplet pentadiynylidene and singlet ethynylcyclopropenylidene
Advanced techniques reveal how defects in nanoscale crystals affect how solar photovoltaics perform.