There’s a Great Future in Plastic Solar Cells
Researchers have created an environmentally-friendly plastic coating that converts a wide range of electrical conductors into air-stable components for flexible, less expensive electronics.
The Science
Using an air-stable polymer, researchers discovered a way to significantly reduce the amount of energy needed to increase the power conversion efficiency for electrodes made from a wide range of conducting materials, including metals, oxides, polymers and graphene. Using this method enabled them to construct the first completely organic solar cell in which the substrate, active layer, and both electrodes are all made from “plastics”.
The Impact
Through this “universal” approach, reactive metals can be replaced with less expensive, more stable electrodes, including conducting polymers, allowing the development of low-cost electronic devices manufactured under environmentally-friendly conditions.
Summary
Organic-based thin-film optoelectronics, such as solar cells, hold great potential as affordable consumer electronics. However, most printed optoelectronics require at least one electrode be a metal having a work function (the amount of energy needed to remove an electron) that is low enough to inject electrons into, or collect, electrons from an organic semiconductor. Unfortunately such metals are very reactive and easily oxidized, which reduces performance of the electrode. To avoid this problem, a controlled fabrication environment and protective barrier are needed to prevent water and/or oxygen exposure, increasing manufacturing complexity and cost. Researchers at Georgia Tech, part of the Center for Interface Science: Solar Electric Materials (CISSEM) EFRC, discovered a universal approach, i.e., applicable to many materials, for producing a low work function electrode that is stable in air. By “sticking” (through physisorption) an ultrathin layer (1 to 10 nanometers) of a commercially available, environmentally-friendly polymer with amine-containing aliphatic chains to a wide range of conductor surfaces, an air-stable, high performance electrode was created. To illustrate this approach’s promise, the researchers demonstrated, for the first time, a completely plastic organic solar cell on a flexible substrate, an approach that would lower manufacturing costs for solar cells and other electronics.
Contact
Bernard Kippelen
Georgia Institute of Technology
[email protected]
Neal R. Armstrong
Director of the Center for Interface Science: Solar Electric Materials EFRC
[email protected]
Funding
DOE Office of Science, Office of Basic Energy Sciences, Energy Frontier Research Centers (EFRC) Program (Y.Z., J.S., J.M., H.C., H.L., P.W., S.B., J.-L.B., S.R.M., and S.G.); NSF Science and Technology Centers Program (C.F.-H., J.K., E.N., and A.D.), Office of Naval Research (T.M.K. and B.K.); NSF grants (A.K., H.S.), DOE Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division (W.H. and T.P.); Deutsche Forschungsgemeinschaft postdoctoral fellowship program (J.M.); National Defense Science and Engineering Graduate Fellowship program and NSF graduate research fellowship (A.J.G.).
Publications
Zhou, Yinhua; Fuentes-Hernandez, Canek; Shim, Jae Won; Meyer, Jens; Giordano, AnthonyJ.; Li, Hong; Winget, Paul; Papadopoulos, Theodoros; Cheun, Hyeunseok; Kim, Jungbae; Fenoll, Mathieu; Dindar, Amir; Haske, Wojciech; Najafabadi, Ehsan; Kahn, TalhaM.; Sojoudi, Hossein; Barlow, Stephen; Graham, Samuel; Brédas, Jean-Luc; Marder, SethR.; Kahn, Antoine; and Kippelen, Bernard “ A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics” Science, 336(6079), 327-332 (2012). [DOI: 10.1126/science.1218829]
Related Links
DOE Office of Science, Stories of Discovery & Innovation
Center for Interface Science: Solar Electric Materials EFRC
Highlight Categories
Performer: University
Additional: Collaborations , Non-DOE Interagency Collaboration , International Collaboration